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SUMMARY:  The process of ultrasonic-welding is widely used in the industry. Nevertheless, its 
numerical modeling, essential for the aeronautic industry, is quite difficult. Indeed, there are two 
different time scales in the process, one “long” time which is the welding time and one short time 
which is the period of the ultrasonic mechanical loading. After explaining how the welding is 
proceeded, a method of time homogenization is presented in order to write down three different 
thermal and mechanical systems of equations. It is based on the use of asymptotic expansions 
which lead, starting from the general thermo-mechanical problem, to three coupled problem 
which are independent from the fast variable and are therefore suitable for numerical 
calculations. A numerical tool for solving these equations is finally introduced, based on the 
level-set method. First results are qualitatively satisfactory and show that physical understanding 
of the process can be obtained by such an approach. 
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INTRODUCTION 

 

 
 

Fig. 1  Principle of ultrasonic welding of two composite plates. 
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This work aims at modeling an original welding process for composite material with 
thermoplastic matrix. Triangular “energy directors” are molded with matrix on a width of two 
centimeters on the border of one of the plates. The two plates are then positioned in order to 
cover each other on the width of the energy directors and an ultrasonic sinusoidal compression 
stress (20 KHz) is applied as shown in Fig. 1a and causes melting due to mechanical dissipation 
[1]. The triangles then flow on the whole interface and perform welding (see Fig. 1b). Such a 
process is to be improved to be suitable for large scale assemblies. The main difficulty of 
modeling and simulating such a process comes from the existence of two time scales, which 
would induce very fine time steps and so huge computation times. This process has been subject 
for few models. First we can mention Benatar [1] who described the process as the succession of 
five phenomena physical phenomena. Some authors like Suresh et al. [6] or Wang et al. [7] 
described the mechanical dissipation in a linear harmonic viscoelastic framework. Nevertheless, 
their models were limited to the thermal aspects only. We propose here a more general 
framework, which also enables to take into account the flow of polymer. 
 
 

PROCESS MODELING  
 

 
Fig. 2  Geometry of the initial energy director. 

 
We focus on a single energy director as described in Fig. 2. The objective is to obtain a thermo-
mechanical formulation able to describe the flow and heating of the polymer due to mechanical 
loading and internal dissipation caused by vibrations. Due to the high frequency and the rather 
long time of the process, a visco-elastic model for the polymer seems necessary. As a first 
approach, a Maxwell model in small displacement is used: 
 

       (1) 
 

where λ is the relaxation time, η the viscosity and ε the strain tensor. Neglecting inertia terms 
and volume forces, the equilibrium equation can be written as: 
 

 (2) 
 

where σ is the extra stress tensor and p the pressure. Composites plates being assumed perfectly 
rigid compared to the energy directors, the displacement of the tip of the director is supposed to 
be null, whereas the displacement of the upper part is split into a fast sinusoidal displacement 
asin(ωt) and a slow displacement ud due to the squeezing of the director during the process. The 
whole mechanical problem can be summarized as follows: 
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In the thermal problem, a fraction α of the viscous part of the mechanical energy εσ &:  is 
supposed to be dissipated during the process. Taking the Maxwell constitutive law (1), the 
thermal problem can be written as: 

 
    (4) 

 
In the homogenization process, the initial problem is transformed into a dimensionless problem, 
using characteristic orders of magnitude of the process described below: 
 
• Viscosity: η0 = 107 Pa.s, at temperature θ=θg=143°C 
• Length: e=300 μm, initial height of the director. 
• Temperature: a temperature θ is transformed into a dimensionless temperature θ∗ by 

θ∗=(θ−θamb)/θref, where θamb is the ambient temperature and θref=θmelt−θamb. 
• Time: the time λ0=1s, duration of the process is used as characteristic time. 
• Other variables: we also introduce dimensionless stress, displacement and strain: 
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• Operators: dimensionless space operators are introduced 
 

 (7) 
 
 
Time Scale - Homogenization Technique 
 
The process being characterized by two different time scales, we now introduce dimensionless 
times t* and τ* such as ttt ωτλ == **0 and . One than can define the time scale factor: 
 

 (8) 
 
 
Taking advantage of this good scales separation, fields of the problem are searched as asymptotic 
expansion [2]: 
 

(9) 
where functions φi are functions of the two time variables t* and τ* periodic with respect to τ*. 
The time derivative of φ can therefore be written as: 
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After writing the initial problem in terms of dimensionless quantities, the homogenization 
technique then consists in injecting asymptotic expansions (9) in the equilibrium Eqns. (3) and 
(4). By identifying each order of power of ξ, several problems are obtained. At the first relevant 
orders of ξ, we get the three following self-consistent coupled problems: 
 
 
 

(P1) 
 
 
 

 (P2) 
 
 
 

 (P3) 
 

 
In these equations, ( )τφ ,t  denotes the average of f over one ultrasonic period. 0/ λλ=Λ  and 

0/ηη=N  are respectively the dimensionless relaxation time and viscosity, and thermal 
parameters A and B are such as: 
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 (P1) is a hypo-elastic problem equivalent to an elastic problem in the small displacement 

framework. It describes a stress fluctuation of order ξ0 linked to a velocity of order ξ-1 
(derivative of u0 with respect to τ). The boundary condition on Γsup is a harmonic condition 
so that the solution can be searched as a harmonic function. In this idea, a simple elastic 
resolution, independent of τ, is possible for this micro-chronological mechanical problem. 

 
 (P2) is the macro-chronological mechanical problem which describes the slow mechanical 

evolution as a visco-elastic Maxwell flow. The stress average is of order ξ0 as well but is 
linked to an average velocity of order ξ0. 

 
 (P3) is the bulk equation for order 0 temperature θ0 and thus can be called the macro-

chronological thermal problem. θ0 is proved to depend on t only and evolves according to a 
classical heat equation with an additional source term which is the average mechanical 
dissipation over one ultrasonic period. 

 
 



 

NUMERICAL PROCEDURE 
 
Although the macro-chronological problem should strictly be visco-elastic, it was set as a purely 
viscous problem. Nevertheless, for a better representativeness of the deformed shape, a strain rate 
dependent viscosity was used, therefore implying a non-linear flow problem. Moreover, though 
rigorously valid above the glassy transition the homogenized equations were used over the whole 
temperature range, but it was checked that the present formulations could be formally extended to 
the whole process range. 
 
Systems (P1-P3) are solved using a classical Galerkin FEM. For each time step the three systems 
of equations are solved iteratively until simultaneous convergence of the three variational forms. 
The resolution is performed on a fixed mesh where the free surface is described by a level-set 
field. This is done using the X-FEM library. At each time step, once the three physical problems 
are solved, the level-set is propagated using a Hamilton-Jacobi method [5]. Then the temperature 
field is convected using a SUPG technique. 
 
Material parameters used in the simulations were adapted from the literature [3, 4]. For the 
micro-chronological problem, a linear approximation was set for the elasticity modulus E: 
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In the macro-chronological mechanical problem, a Carreau law for the viscosity was chosen, with 
an Arrhenius type temperature dependency: 
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where a = 0.7, m = 0.54, Ea = 74400 and A = 5.6e−3. For the thermal problem, we adopt a simple 
linear form for ρc and k: 
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RESULTS AND DISCUSSION 

 
Fig. 3 shows the evolution of the level set negative part, which is the material domain. We clearly 
observe a flow of polymer that begins at the tip of the director. As the loading is pursued the 
flowing zone increases and fills the gap between the two plates. This is in agreement with the 
deformed shape of the micrography of Fig. 4, made on a sample obtained with a stopped 
experiment. It would correspond to the simulated shape at time t = 1.10 s. Next step would be to 
obtain better controlled interrupted experiments. This shape is clearly associated to the 
temperature field, and is consistent with results of literature [1, 7].  
 



 

 
 

Fig. 3  Evolution of the level-set, negative part only. 
 
Despite those good first results, at this stage of developments, the maximal temperature only 
reaches 0.4 Tmelt , which is low regarding the expected welding at Tmelt in the real process. This 
shows the need for finer instrumented experiments and material parameter identification which 
are the subject of ongoing works. 
 

 
Fig. 4  Micrography of a stopped experiment. 
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